Demonstrate understanding of equilibrium principles in aqueous systems

Understanding the "s & Ks question"

Write the equation for the equilibrium occurring in a saturated solution of copper(II) hydroxide, Cu(OH)2.

Write an equation for the equilibrium occurring in a saturated solution of AgBr

This means - WRITE AN EQUATION! For the equilibrium Use the \rightleftharpoons arrow.

Do NOT write + $H_2O(1)$

- $Cu(OH)_2(s) \rightleftharpoons Cu^{2+}(aq) + 2OH^{-}(aq)$ (correct ions and balancing)
- AgBr(s) \rightleftharpoons

Write the expression for Ks (Cu(OH)₂).

Write the expression for K_s (CaCO₃).

Write the solubility product expression, K_s , for silver carbonate (Ag_2CO_3).

This means - WRITE $K_s = [][]$ Make them [] and NOT () or $\{\}$ brackets!

- K_s = [] [] AB type
- $K_s = [][]^2$ or $K_s = []^2[]$ AB₂ or A₂B type

Calculate the solubility product of CaCO₃, K_s(CaCO₃)

Calculate the solubility product of Pbl₂, K_s(Pbl₂)

This means - Calculate Ks (solubility product) from s (which must be in mol L-1)

If solubility is given in g L⁻¹, first convert to mol L⁻¹. How? Divide by M (molar mass).

Decide first AB or AB₂ / A₂B, then use

$$K_S = s^2$$
 OR $K_S = 4s^3$

Ks has no units in L3 Chemistry

(You will be given these equations on the Resource sheet in 2018)

Calculate the solubility (in mol L^{-1}) of lead(II) chloride in water at 25°C, and give the [Pb²⁺] and [Cl⁻] in the solution.

Calculate the solubility of Ag₂CrO₄(s), and hence give the [Ag⁺] and [CrO₄²⁻] in the solution.

Calculate the solubility of Cu(OH)₂ in water at 25°C.

This means - Calculate solubility, s, from Ks s will be in mol L-1

Decide first AB or AB₂ / A₂B

$$s = \sqrt{Ks}$$
 OR $s = \sqrt[3]{\frac{Ks}{4}}$

(You will have to rearrange the formula given on the Resource sheet)

The 's' you calculate will be in mol L-1. You may then be asked to do some additional calculations such as

- State the concentrations of the different ions e.g. [Pb²⁺] and [Cl⁻]
- Convert solubility from mol L⁻¹ to g L⁻¹
- Scale solubility in g L⁻¹ to a different volume e.g. mass (g) in 50 mL

Calculate the mass of Ag₂CO₃ that will dissolve in 50 mL of water to make a saturated solution at 25°C

Strategy

 $K_s \rightarrow s \pmod{L^{-1}} \rightarrow solubility (g L^{-1}) \rightarrow mass (g) that dissolves in 50 mL$

- Use given value of K_s to find s think this is an A_2B type. Answer for s will be in mol L^{-1} .
- Convert mol L⁻¹ to g L⁻¹. How? Multiply by M (molar mass).
- "Scale" your answer in g L⁻¹ which means g per 1000 mL to find g per 50 mL; it's just a ratio.