Demonstrate understanding of equilibrium principles in aqueous systems ## Understanding the "s & Ks question" Write the equation for the equilibrium occurring in a saturated solution of copper(II) hydroxide, Cu(OH)2. Write an equation for the equilibrium occurring in a saturated solution of AgBr This means - WRITE AN EQUATION! For the equilibrium Use the \rightleftharpoons arrow. Do NOT write + $H_2O(1)$ - $Cu(OH)_2(s) \rightleftharpoons Cu^{2+}(aq) + 2OH^{-}(aq)$ (correct ions and balancing) - AgBr(s) \rightleftharpoons Write the expression for Ks (Cu(OH)₂). Write the expression for K_s (CaCO₃). Write the solubility product expression, K_s , for silver carbonate (Ag_2CO_3). This means - WRITE $K_s = [][]$ Make them [] and NOT () or $\{\}$ brackets! - K_s = [] [] AB type - $K_s = [][]^2$ or $K_s = []^2[]$ AB₂ or A₂B type Calculate the solubility product of CaCO₃, K_s(CaCO₃) Calculate the solubility product of Pbl₂, K_s(Pbl₂) This means - Calculate Ks (solubility product) from s (which must be in mol L-1) If solubility is given in g L⁻¹, first convert to mol L⁻¹. How? Divide by M (molar mass). Decide first AB or AB₂ / A₂B, then use $$K_S = s^2$$ OR $K_S = 4s^3$ Ks has no units in L3 Chemistry (You will be given these equations on the Resource sheet in 2018) Calculate the solubility (in mol L^{-1}) of lead(II) chloride in water at 25°C, and give the [Pb²⁺] and [Cl⁻] in the solution. Calculate the solubility of Ag₂CrO₄(s), and hence give the [Ag⁺] and [CrO₄²⁻] in the solution. Calculate the solubility of Cu(OH)₂ in water at 25°C. This means - Calculate solubility, s, from Ks s will be in mol L-1 Decide first AB or AB₂ / A₂B $$s = \sqrt{Ks}$$ OR $s = \sqrt[3]{\frac{Ks}{4}}$ (You will have to rearrange the formula given on the Resource sheet) The 's' you calculate will be in mol L-1. You may then be asked to do some additional calculations such as - State the concentrations of the different ions e.g. [Pb²⁺] and [Cl⁻] - Convert solubility from mol L⁻¹ to g L⁻¹ - Scale solubility in g L⁻¹ to a different volume e.g. mass (g) in 50 mL Calculate the mass of Ag₂CO₃ that will dissolve in 50 mL of water to make a saturated solution at 25°C ## Strategy $K_s \rightarrow s \pmod{L^{-1}} \rightarrow solubility (g L^{-1}) \rightarrow mass (g) that dissolves in 50 mL$ - Use given value of K_s to find s think this is an A_2B type. Answer for s will be in mol L^{-1} . - Convert mol L⁻¹ to g L⁻¹. How? Multiply by M (molar mass). - "Scale" your answer in g L⁻¹ which means g per 1000 mL to find g per 50 mL; it's just a ratio.